Nuestro sitio web utiliza cookies para mejorar y personalizar su experiencia y para mostrar anuncios (si los hay). Nuestro sitio web también puede incluir cookies de terceros como Google Adsense, Google Analytics o YouTube. Al utilizar el sitio web, usted acepta el uso de cookies. Hemos actualizado nuestra Política de Privacidad. Haga clic en el botón para consultar nuestra Política de Privacidad.

La IA Global: Puntos Clave de su Gobernanza

Qué se discute en la gobernanza internacional de la IA

La gobernanza internacional de la inteligencia artificial (IA) congrega a gobiernos, organizaciones internacionales, empresas, instituciones académicas y actores de la sociedad civil para establecer pautas, estándares y herramientas destinadas a orientar cómo se desarrolla y emplea esta tecnología. Las discusiones integran dimensiones técnicas, éticas, económicas, de seguridad y geopolíticas. A continuación se detallan los asuntos clave, ejemplos específicos y los mecanismos que distintos foros proponen o ya ponen en práctica.

Amenazas para la seguridad y la integridad

La preocupación por la seguridad incluye fallos accidentales, usos maliciosos y consecuencias estratégicas a gran escala. Entre los puntos clave están:

  • Riesgos sistémicos: posibilidad de que modelos muy potentes actúen de forma imprevisible o escapen a controles, afectando infraestructuras críticas.
  • Uso dual y militarización: aplicación de IA en armas, vigilancia y ciberataques. En foros de la ONU y del Convenio sobre Ciertas Armas Convencionales se discute cómo regular o prohibir sistemas de armas completamente autónomas.
  • Reducción del riesgo por diseño: prácticas como pruebas adversarias, auditorías de seguridad, y exigencia de evaluaciones de riesgo antes del despliegue.

Ejemplo: en el ámbito multilateral se discute la creación de normas vinculantes sobre SALA (sistemas de armas letales autónomas) y procedimientos de verificación para evitar proliferación.

Privacidad, vigilancia y protección de los derechos humanos

La IA plantea retos para derechos civiles y libertades públicas:

  • Reconocimiento facial y vigilancia masiva: riesgo de erosión de la privacidad y discriminación. Varios países y la Unión Europea estudian restricciones o moratorias para usos masivos.
  • Protección de datos: gobernanza del uso de grandes volúmenes de datos para entrenar modelos, consentimiento, minimización y anonimización.
  • Libertad de expresión e información: moderación automatizada, generación de desinformación y deepfakes que afectan procesos democráticos.

Caso: campañas de desinformación potenciadas por generación automática de contenido han llevado a debates en foros electorales y a propuestas para obligaciones de transparencia sobre el uso de sistemas generativos en campañas.

Promoción de la igualdad, rechazo a la discriminación e impulso de la inclusión

Los modelos pueden reflejar o incluso intensificar sesgos existentes cuando los datos de entrenamiento no resultan suficientemente representativos:

  • Discriminación algorítmica: revisiones independientes, indicadores de equidad y procedimientos de corrección.
  • Acceso y desigualdad global: posibilidad de que la capacidad tecnológica se concentre en unas pocas naciones o corporaciones; urgencia de impulsar la transferencia tecnológica y la cooperación para fortalecer el desarrollo local.

Dato y ejemplo: estudios han mostrado que modelos entrenados con datos sesgados dan peores resultados para grupos subrepresentados; por ello iniciativas como evaluaciones de impacto social y requisitos de testeo público son cada vez más solicitadas.

Claridad, capacidad de explicación y seguimiento

Los reguladores discuten cómo garantizar que sistemas complejos sean comprensibles y auditables:

  • Obligaciones de transparencia: informar cuando una decisión automatizada afecta a una persona, publicar documentación técnica (fichas del modelo, orígenes de datos) y facilitar mecanismos de recurso.
  • Explicabilidad: niveles adecuados de explicación técnica para distintos públicos (usuario final, regulador, tribunal).
  • Trazabilidad y registro: bitácoras de entrenamiento y despliegue para permitir auditorías posteriores.

la propuesta legislativa de la Unión Europea organiza los sistemas por niveles de riesgo y requiere que se entregue documentación exhaustiva para aquellos que se catalogan como de alto riesgo

Cumplimiento y responsabilidad legal

La cuestión de cómo asignar la responsabilidad por daños ocasionados por sistemas de IA se ha convertido en un punto clave:

  • Regímenes de responsabilidad: se discute si debe recaer en el desarrollador, el proveedor, el integrador o el usuario final.
  • Certificación y conformidad: incluyen esquemas de certificación previa, evaluaciones independientes y posibles sanciones en caso de incumplimiento.
  • Reparación a las víctimas: se plantean vías ágiles para ofrecer compensación y soluciones de remediación.

Datos normativos: la propuesta de la UE contempla sanciones proporcionales a la gravedad, que incluyen multas significativas para incumplimientos en sistemas de alto riesgo.

Derechos de propiedad intelectual y disponibilidad de datos

El uso de contenidos para entrenar modelos ha generado tensiones entre creación, copia y aprendizaje automático:

  • Derechos de autor y recopilación de datos: litigios y solicitudes de claridad sobre si el entrenamiento constituye uso legítimo o requiere licencia.
  • Modelos y datos como bienes estratégicos: debates sobre si imponer licencias obligatorias, compartir modelos en repositorios públicos o restringir exportaciones.

Varios litigios recientes surgidos en distintos países han puesto en entredicho la legalidad del entrenamiento de modelos con material protegido, lo que está acelerando ajustes normativos y promoviendo acuerdos entre las partes involucradas.

Economía, mercado laboral y dinámica competitiva

La IA es capaz de remodelar mercados, empleos y la organización empresarial:

  • Sustitución y creación de empleo: diversas investigaciones revelan impactos mixtos: ciertas labores se automatizan mientras otras reciben apoyo tecnológico, por lo que resultan esenciales las políticas activas de capacitación.
  • Concentración de mercado: existe la posibilidad de que surjan monopolios debido al dominio de datos y de modelos centrales, lo que impulsa el debate sobre competencia e interoperabilidad.
  • Impuestos y redistribución: se analizan esquemas de tributación sobre ganancias ligadas a la automatización, así como mecanismos para sostener la protección social y los programas de recualificación.
Sostenibilidad ambiental

El impacto energético y material asociado al entrenamiento y funcionamiento de los modelos se encuentra sujeto a regulaciones y prácticas recomendadas:

  • Huella de carbono: la preparación de modelos de gran escala puede requerir un uso considerable de energía; se debaten métricas y posibles límites.
  • Optimización y transparencia energética: adopción de sistemas de eficiencia, divulgación del consumo y transición hacia infraestructuras alimentadas con fuentes renovables.

Estudio relevante: investigaciones han mostrado que el entrenamiento intensivo de modelos de lenguaje puede generar emisiones equivalentes a decenas o cientos de toneladas de CO2 si no se optimiza el proceso.

Normas técnicas, estándares y interoperabilidad

La adopción de estándares facilita seguridad, confianza y comercio:

  • Marco de normalización: desarrollo de estándares técnicos internacionales sobre robustez, interfaces y formatos de datos.
  • Interoperabilidad: garantizar que sistemas distintos puedan cooperar con garantías de seguridad y privacidad.
  • Rol de organismos internacionales: OCDE, UNESCO, ONU, ISO y foros regionales participan en la armonización normativa.

Ejemplo: la OCDE formuló principios para la IA que han servido como referencia para muchas políticas públicas.

Procesos de verificación, observancia y coordinación multilateral

Sin mecanismos de verificación sólidos, las normas quedan como simples declaraciones:

  • Inspecciones y auditorías internacionales: se plantean observatorios multilaterales que monitoreen el cumplimiento y difundan información técnica.
  • Mecanismos de cooperación técnica: apoyo para naciones con menor capacidad, intercambio de buenas prácticas y recursos destinados a reforzar la gobernanza.
  • Sanciones y medidas comerciales: debate sobre restricciones a la exportación de tecnologías delicadas y acciones diplomáticas frente a eventuales incumplimientos.

Caso: las limitaciones impuestas al comercio de semiconductores ilustran cómo la tecnología de IA puede transformarse en un asunto de política comercial y de seguridad.

Instrumentos normativos y recursos aplicados

Las respuestas normativas varían entre instrumentos vinculantes y enfoques flexibles:

  • Regulación vinculante: leyes nacionales y regionales que imponen obligaciones y sanciones (ejemplo: propuesta de ley en la Unión Europea).
  • Autorregulación y códigos de conducta: guías emitidas por empresas y asociaciones que pueden ser más ágiles pero menos exigentes.
  • Herramientas de cumplimiento: evaluaciones de impacto, auditorías independientes, etiquetas de conformidad, y entornos experimentales regulatorios para probar políticas.

Participación ciudadana y gobernanza democrática

La validez de las normas se sustenta en una participación amplia:

  • Procesos participativos: audiencias públicas, órganos éticos y la presencia de comunidades involucradas.
  • Educación y alfabetización digital: con el fin de que la población comprenda los riesgos y se involucre en la toma de decisiones.

Ejemplo: iniciativas de consulta ciudadana en varios países han influido en requisitos de transparencia y límites al uso de reconocimiento facial.

Relevantes presiones en el escenario geopolítico

La carrera por la primacía en IA implica riesgos de fragmentación:

  • Competencia tecnológica: inversiones estratégicas, subsidios y alianzas que pueden crear bloques tecnológicos divergentes.
  • Normas divergentes: diferentes enfoques regulatorios (más restrictivo versus más permissivo) afectan comercio y cooperación internacional.

Resultado: la gobernanza global intenta conciliar la armonización regulatoria con la autonomía tecnológica.

Iniciativas y menciones multilaterales

Existen diversas iniciativas que actúan como punto de referencia:

  • Principios de la OCDE: directrices destinadas a promover el uso responsable y fiable de la IA.
  • Recomendación de la UNESCO: marco ético concebido para orientar la formulación de políticas nacionales.
  • Propuestas regionales: la Unión Europea desarrolla un reglamento basado en la gestión del riesgo y en exigencias de transparencia y seguridad.

Estas iniciativas muestran la combinación de normas no vinculantes y propuestas legislativas concretas que avanzan en distintos ritmos.

La gobernanza internacional de la IA se configura como un sistema en constante evolución que ha de armonizar requerimientos técnicos, principios democráticos y contextos geopolíticos. Para que las respuestas resulten efectivas, se precisan marcos regulatorios definidos, procesos de verificación fiables y mecanismos

Por Isabella Nguyen

También te puede interesar